Jika sebelumnya kita menguji beda mean menggunakan Teknik Anava dua Jalur, nah sekarang ini kita kan belajar menggunakan teknik yang berbeda lagi yitu Pos Hoc Test.
Uji F pada anava hanya memberikan petunjuk ada tidaknya perbedaan mean-mean kelompok. Jika ada beda antara mean - mena dan peneliti ingin mengetahui signifikansi perbedaan itu maka harus dilakukan analisa menggunakan Pos Hoc Test. Ada banyak jenis Pos Hoc Test yang dapat digunakan untuk mengetahui beda signifikansi. Namun yang akan digunakan dalam penelitian ini adalah Uji HSD(High significance Difference) dan Uji LSD (Least Significance Different). Berikut rumus untuk HSD dan LSD:
·
HSD0,05
= (q0,05) Ö((MSE/nAixBi) +(MSE/n2AixBi))
·
LSD0,05
= (t0,05) Ö((MSE/nAixBi) +(MSE/n2AixBi))
·
Beda = ½xAixBitopi – x2AixBitopi ½
Keterangan:
ü MSE = mean square error
ü N
= jumlah subyek
ü i = 1, 2, 3 ……n
Jika
beda > dari HSD atau LSD maka dikatakan beda signifikan
Jika
beda < dari HSD atau LSD maka dikatakan beda tidak signifikan
------Baca juga: Teknik Anava Satu Jalur (One Way Anava)----
Ada hipotesis yang menyatakan bahwa ada hubungan kompetensi siswa laki-laki dan perempuan yang diajari dengan menggunakan 3 model pembelajaran yang berbeda, oleh karena itu diadakan penelitian Pengaruh jenis kelamin dan model pembelajaran terhadap kompetensi siswa. Data kompetensi siswa-siswi yang mengikuti 3 model pembelajaran yang berbeda adalah sebagai berikut:
Jenis Kelamin (A) |
Model Pembelajaran (B) |
|||||||
STAD (B1) |
TGT (B2) |
MPBM (B3) |
TOTAL |
|||||
X1 |
X12 |
X2 |
X22 |
X3 |
X32 |
XT |
XT2 |
|
Lk (A1) |
30 |
900 |
65 |
4225 |
70 |
4900 |
165 |
10025 |
50 |
2500 |
68 |
4624 |
73 |
5329 |
191 |
12453 |
|
58 |
3364 |
68 |
4624 |
73 |
5329 |
199 |
13317 |
|
60 |
3600 |
68 |
4624 |
73 |
5329 |
201 |
13553 |
|
63 |
3969 |
68 |
4624 |
73 |
5329 |
204 |
13922 |
|
63 |
3969 |
70 |
4900 |
73 |
5329 |
206 |
14198 |
|
63 |
3969 |
70 |
4900 |
75 |
5625 |
208 |
14494 |
|
63 |
3969 |
70 |
4900 |
75 |
5625 |
208 |
14494 |
|
65 |
4225 |
70 |
4900 |
75 |
5625 |
210 |
14750 |
|
65 |
4225 |
70 |
4900 |
75 |
5625 |
210 |
14750 |
|
65 |
4225 |
70 |
4900 |
75 |
5625 |
210 |
14750 |
|
70 |
4900 |
75 |
5625 |
145 |
10525 |
|||
∑A1 |
645 |
38915 |
827 |
57021 |
885 |
65295 |
2357 |
161231 |
Pr (A2) |
75 |
5625 |
80 |
6400 |
85 |
7225 |
240 |
19250 |
75 |
5625 |
80 |
6400 |
85 |
7225 |
240 |
19250 |
|
75 |
5625 |
80 |
6400 |
85 |
7225 |
240 |
19250 |
|
75 |
5625 |
80 |
6400 |
85 |
7225 |
240 |
19250 |
|
75 |
5625 |
80 |
6400 |
85 |
7225 |
240 |
19250 |
|
76 |
5776 |
83 |
6889 |
85 |
7225 |
244 |
19890 |
|
78 |
6084 |
85 |
7225 |
85 |
7225 |
248 |
20534 |
|
78 |
6084 |
85 |
7225 |
88 |
7744 |
251 |
21053 |
|
78 |
6084 |
85 |
7225 |
90 |
8100 |
253 |
21409 |
|
85 |
7225 |
90 |
8100 |
175 |
15325 |
|||
95 |
9025 |
95 |
9025 |
|||||
∑A2 |
685 |
52153 |
823 |
67789 |
958 |
83544 |
2466 |
203486 |
TOTAL |
1330 |
91068 |
1650 |
124810 |
1843 |
148839 |
4823 |
364717 |
Beda Pos Hoc Test
1. Rata-rata kompeternsi siswa bila ditinjau secara bersama
(interaksi) antara model pembelajaran dan jenis kelamin.
a. Rata – rata jenis kelamin
laki-laki (A1) dan model STAD (B1)
xA1xB1topi = ∑xi/n = = 58,64
b. Rata – rata jenis kelamin
laki-laki (A1) dan model TGT (B2)
xA1xB2topi =∑xi/n= 827/12 => 68,92
c.
Rata – rata jenis kelamin laki-laki (A1)
dan model MPBM (B3)
xA1xB2topi =∑xi/n =885/12 => 73,75
d.
Rata – rata jenis kelamin perempuan (A2)
dan model STAD (B1)
xA2xB1topi =∑xi/n =685/9 => 76,1
e. Rata – rata jenis kelamin
perempuan (A2) dan model TGT (B2)
xA2xB2topi =∑xi/n =823/10 => 82,3
f.
Rata – rata jenis kelamin
perempuan (A2) dan model MPBM (B3)
xA2xB3topi =∑xi/n =958/11 => 87,09
2. Beda rata-rata kompeternsi siswa bila ditinjau secara bersama
(interaksi) antara model pembelajaran dan jenis kelamin.
a.
Beda rata – rata [Lk(A1)-STAD
(B1)] vs [Lk(A1)-
TGT (B2)]
Beda
= ½xA1xB1topi – xA1xB2topi ½
= ½58,64 –68,92½
= 10,28
b.
Beda rata – rata [Lk(A1)-
STAD (B1)] vs [Lk(A1)-
MPBM (B3)]
Beda
=½xA1xB1topi – xA1xB3topi ½
= ½58,64 – 73,75 ½
= 15,11
c.
Beda rata – rata [Lk(A1)- STAD (B1)]
vs [Pr(A2)- STAD (B1)]
Beda
= ½xA1xB1topi – xA2xB1topi ½
= ½58,64 –76,1½
= 17,46
d.
Beda rata – rata [Lk(A1)-
STAD (B1)] vs [Pr(A2)-
TGT (B2)]
Beda
= ½xA1xB1topi – xA2xB2topi ½
= ½58,64 –82,3½
=
23,66
e.
Beda rata – rata [Lk(A1)-
STAD (B1)] vs [Pr(A2)-
MPBM (B3)]
Beda
= ½xA1xB1topi – xA2xB3topi ½
= ½58,64 –87,09½
= 28,45
f. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Lk(A1)- MPBM (B3)]
Beda
= ½xA1xB2topi – xA1xB3topi ½
= ½68,92 –73,75½
= 4,83
g. Beda rata – rata [Lk(A1)-
TGT (B2)] vs [Pr(A2)-
STAD (B1)]
Beda
= ½xA1xB2topi – xA2xB1topi ½
= ½68,92 –76,1½
= 7,18
h.
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- TGT (B2)]
Beda
= ½xA1xB2topi – xA2xB2topi ½
= ½68,92 –82,3½
= 13,38
i.
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
Beda
= ½xA1xB2topi – xA2xB3topi ½
= ½68,92 –87,09½
= 18,17
j. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- STAD (B1)]
Beda
= ½xA1xB3topi – xA2xB1topi ½
= ½73,75 –76,1½
= 2,35
k. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- TGT (B2)]
Beda
= ½xA1xB3topi – xA2xB2topi ½
= ½73,75 –82,3½
= 8,55
l. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- MPBM (B3)]
Beda
= ½xA1xB3topi – xA2xB3topi ½
= ½73,75 –87,09½
= 13,34
m.
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)- TGT (B2)]
Beda
= ½xA2xB1topi – xA2xB2topi ½
= ½76,1 –82,3½
= 6,2
n. Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)- MPBM (B3)]
Beda
= ½xA2xB1topi – xA2xB3topi ½
= ½76,1 –87,09½
= 10,99
o. Beda rata – rata [Pr(A2)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
Beda
= ½xA2xB2topi – xA2xB3topi ½
= ½82,3 –87,09½
= 4,79
-----BACA JUGA : Teknik Uji T sample Bebas (independent smaple)
Uji HSD (Highly Significance Difference)
ð q0,05= 4,16
a. Beda rata – rata [Lk(A1)-STAD
(B1)] vs [Lk(A1)-
TGT (B2)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB1)
+(MSE/nA1xB2))
= (4,16)Ö((22,57/11) +(22,57/12))
= (4,16) (1,982)= 8,24
b. Beda rata – rata [Lk(A1)-STAD
(B1)] vs [Lk(A1)-
MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB1)
+(MSE/nA1xB3))
= (4,16) Ö((22,57/11) +(22,57/12))
= (4,16)
(1,982) = 8,24
c. Beda rata – rata [Lk(A1)-
STAD (B1)] vs [Pr(A2)-
STAD (B1)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB1))
= (4,16) Ö((22,57/11) +(22,57/9))
= (4,16)
(2,14)= 8,90
d.
Beda rata – rata [Lk(A1)- STAD (B1)]
vs [Pr(A2)- TGT (B2)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB2))
= (4,16) Ö((22,57/11)
+(22,57/10))
= (4,16)
(2,076)= 8,64
e. Beda rata – rata [Lk(A1)-
STAD (B1)] vs [Pr(A2)-
MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB3))
= (4,16)Ö((22,57/11) +(22,57/11))
= (4,16)
(2,026)= 8,43
f. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Lk(A1)- MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB2)
+(MSE/nA1xB3))
= (4,16) Ö((22,57/12) +(22,57/12))
= (4,16)
(1,94)= 8,07
g. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- STAD (B1)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB2) +(MSE/nA1xB1))
= (4,16) Ö((22,57/12) +(22,57/9))
= (4,16)
(2,09)= 8,71
h. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- TGT (B2)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB2)
+(MSE/nA2xB2))
= (4,16) Ö((22,57/12) +(22,57/10))
= (4,16)
(2,03)= 8,46
i. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB2)
+(MSE/nA2xB3))
= (4,16) Ö((22,57/12)
+(22,57/11))
= (4,16)
(1,98)= 8,25
j. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- STAD (B1)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB3)
+(MSE/nA2xB1))
= (4,16) Ö((22,57/12) +(22,57/9))
= (4,16)
(2,09) = 8,71
k. Beda rata – rata [Lk(A1)-
MPBM (B3)] vs [Pr(A2)-
TGT (B2)]
HSD0,05 = (q0,05) Ö((MSE/nA1xB3)
+(MSE/nA2xB2))
= (4,16) Ö((22,57/12)
+(22,57/10))
= (4,16)
(2,03) = 8,46
l. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA2xB3)
+(MSE/nA2xB2))
= (4,16) Ö((22,57/12)
+(22,57/11))
= (4,16)
(1,98)= 8,25
m.
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)- TGT (B2)]
HSD0,05 = (q0,05) Ö((MSE/nA2xB1)
+(MSE/nA2xB2))
= (4,16)Ö((22,57/9) +(22,57/10))
= (4,16)
(2,18)= 9,08
n. Beda rata – rata [Pr(A2)-
STAD (B1)] vs [Pr(A2)-
MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA2xB1)
+(MSE/nA2xB3))
= (4,16) Ö((22,57/9) +(22,57/11))
= (4,16)
(2,14) = 8,90
o. Beda rata – rata [Pr(A2)-
TGT (B2)] vs [Pr(A2)-
MPBM (B3)]
HSD0,05 = (q0,05) Ö((MSE/nA2xB2)
+(MSE/nA2xB3))
= (4,16) Ö((22,57/10)
+(22,57/11))
= (4,16)
(2,076)= 8,64
p. Tabel Tabel perbandingan HSD0,05 dengan beda Mean
Beda Antara |
Besar Beda |
HSD0,05 |
Kesimpulan |
Beda rata – rata [Lk(A1)-STAD (B1)] vs [Lk(A1)- TGT (B2)]
|
10,28 |
8,24 |
Beda Signifikan |
Beda rata – rata [Lk(A1)-STAD (B1)] vs [Lk(A1)- MPBM (B3)]
|
15,11 |
8,24 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- STAD (B1)]
|
17,46 |
8,90 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- TGT (B2)]
|
23,66 |
8,64 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- MPBM (B3)]
|
28,45 |
8,43 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Lk(A1)- MPBM (B3)]
|
4,83 |
8,07 |
Beda tidak signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- STAD (B1)]
|
7,18 |
8,71 |
Beda tidak signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- TGT (B2)]
|
13,38 |
8,46 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
|
18,17 |
8,25 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- STAD(B1)]
|
2,35 |
8,71 |
Beda tidak signifikan |
Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- TGT (B2)]
|
8,55 |
8,46 |
Beda Signifikan |
Beda rata – rata [Lk(A1)-MPBM (B3)] vs [Pr(A2)-MPBM (B3)] |
13,34 |
8,25 |
Beda Signifikan |
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)-TGT (B2)]
|
6,2 |
9,08 |
Beda tidak signifikan |
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)-MPBM (B3)]
|
10,99 |
8,90 |
Beda Signifikan |
Beda rata – rata [Pr(A2)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
|
4,79 |
8,64 |
Beda tidak signifikan |
-------Baca juga : Paired sample test
Uji LSD (Least Significance Difference)
ð t0,05= 2,00
a.
Beda rata – rata [Lk(A1)-STAD (B1)]
vs [Lk(A1)- TGT (B2)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB1)
+(MSE/nA1xB2))
= (2,00) Ö((22,57/11) +(22,57/12))
= (2,00)
(1,982) = 3,964
b.
Beda rata – rata [Lk(A1)-STAD (B1)]
vs [Lk(A1)- MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB1)
+(MSE/nA1xB3))
= (2,00) Ö((22,57/11)
+(22,57/12))
= (2,00)
(1,982)= 3,964
c.
Beda rata – rata [Lk(A1)- STAD (B1)]
vs [Pr(A2)- STAD (B1)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB1))
= (2,00) Ö((22,57/11) +(22,57/9))
= (2,00)
(2,14)= 8,90
d.
Beda rata – rata [Lk(A1)- STAD (B1)]
vs [Pr(A2)- TGT (B2)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB2))
= (2,00) Ö((22,57/11)
+(22,57/10))
= (2,00)
(2,076) = 4,152
e.
Beda rata – rata [Lk(A1)- STAD (B1)]
vs [Pr(A2)- MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB1)
+(MSE/nA2xB3))
= (2,00) Ö((22,57/11) +(22,57/11))
= (2,00)
(2,026)= 4,052
f. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Lk(A1)- MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB2)
+(MSE/nA1xB3))
= (2,00) Ö((22,57/12) +(22,57/12))
= (2,00)
(1,94)= 3,88
g.
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- STAD (B1)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB2)
+(MSE/nA1xB1))
= (2,00) Ö((22,57/12) +(22,57/9))
= (2,00)
(2,09)= 4,18
h.
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- TGT (B2)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB2)
+(MSE/nA2xB2))
= (2,00) Ö((22,57/12) +(22,57/10))
= (2,00)
(2,03) = 4,06
i. Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB2)
+(MSE/nA2xB3))
= (2,00) Ö((22,57/12)
+(22,57/11))
= (2,00)
(1,98)= 3,96
j. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- STAD (B1)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB3)
+(MSE/nA2xB1))
= (2,00) Ö((22,57/12)
+(22,57/9))
= (2,00)
(2,09) = 4,18
k. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- TGT (B2)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB3)
+(MSE/nA2xB2))
= (2,00) Ö((22,57/12) +(22,57/10))
= (2,00)
(2,03) = 4,06
l. Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA1xB3)
+(MSE/nA2xB3))
= (2,00)Ö((22,57/12) +(22,57/11))
= (2,00)
(1,98) = 3,96
m.
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)- TGT (B2)]
LSD0,05 = (t0,05) Ö((MSE/nA2xB1)
+(MSE/nA2xB2))
= (2,00) Ö((22,57/9)
+(22,57/10))
= (2,00)
(2,18) = 4,36
n. Beda rata – rata [Pr(A2)-
STAD (B1)] vs [Pr(A2)-
MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA2xB1)
+(MSE/nA2xB3))
= (2,00) Ö((22,57/9) +(22,57/11))
= (2,00)
(2,14) = 4,28
o. Beda rata – rata [Pr(A2)-
TGT (B2)] vs [Pr(A2)-
MPBM (B3)]
LSD0,05 = (t0,05) Ö((MSE/nA2xB2)
+(MSE/nA2xB3))
= (2,00) Ö((22,57/10) +(22,57/11))
= (2,00)
(2,076) = 4,152
p. Tabel perbandingan LSD0,05 dengan beda Mean
Beda Antara |
Besar Beda |
LSD0,05 |
Kesimpulan |
Beda rata – rata [Lk(A1)-STAD (B1)] vs [Lk(A1)- TGT (B2)]
|
10,28 |
3,964 |
Beda Signifikan |
Beda rata – rata [Lk(A1)-STAD (B1)] vs [Lk(A1)- MPBM (B3)]
|
15,11 |
3,964 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- STAD (B1)]
|
17,46 |
8,90 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- TGT (B2)]
|
23,66 |
4,152 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- STAD (B1)] vs [Pr(A2)- MPBM (B3)]
|
28,45 |
4,052 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Lk(A1)- MPBM (B3)]
|
4,83 |
3,88 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- STAD (B1)]
|
7,18 |
4,18 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- TGT (B2)]
|
13,38 |
4,06 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
|
18,17 |
3,96 |
Beda Signifikan |
Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- STAD(B1)]
|
2,35 |
4,18 |
Beda tidak signifikan |
Beda rata – rata [Lk(A1)- MPBM (B3)] vs [Pr(A2)- TGT (B2)]
|
8,55 |
4,06 |
Beda Signifikan |
Beda rata – rata [Lk(A1)-MPBM (B3)] vs [Pr(A2)-MPBM (B3)] |
13,34 |
3,96 |
Beda Signifikan |
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)-TGT (B2)]
|
6,2 |
4,36 |
Beda Signifikan |
Beda rata – rata [Pr(A2)- STAD (B1)] vs [Pr(A2)-MPBM (B3)]
|
10,99 |
4,28 |
Beda Signifikan |
Beda rata – rata [Pr(A2)- TGT (B2)] vs [Pr(A2)- MPBM (B3)]
|
4,79 |
4,152 |
Beda Signifikan |
Komentar
Posting Komentar
silahkan berikan komentar